G-NMR: Establishing a Network of German NMR Centers

Projekt-Besprechung in Frauenchiemsee 12. September 2013

Agenda

PLENUM

- Betrieb und Wartung von NMR-Infrastrukturen
 - Beschluß über Nutzerordnung (12:30-13:00) (H. Schwalbe)
- NMR-Workshops und Summer Schools (13:00-13:30) (B. Reif)

BREAK-OUT SESSIONS

- Einheitliche Standard-Proben mit standard operation procedures (13:00-14:00)
 - Liquid-State NMR (F. Löhr, G. Gemmecker)
 - Solid-State NMR (B. Reif, C. Glaubitz)
 - IT-Netzwerk für Technologie-Transfer (14:00-15:00)
 - Datenspeicherung, Austausch Software / Pulssequenzen (S. Asami, J. Lopez, M. Betz)
 - Unterrichtsmaterialien, Lehrkonzepte (Richter, Gemmecker)

Pauschale Kosten

"Forschungs"-NMR (Tagessätze)

	Feldstärke 500 – 600 MHz	Feldstärke 700 – 800 MHz	Feldstärke ≥ 900 MHz (bzw. 850 MHz WB)	
	Nutzungsdaue	er an NMR-Geräte	n bis zu 7 Tagen:	
	960 €/Tag	1.440 €/Tag	1.920 €/Tag	
	(40 €/h)*	(60 €/h)*	(80 €/h)*	
Nutzung als wissenschaftliche Zusammenarbeit	Nutzungsdauer an NMR-Geräten zwischen 8 und 20 Tagen:			
	800 €/Tag	1.200 €/Tag	1.600 €/Tag	
	(33,34 €/h)*	(50 €/h)*	(66,67 €/h)*	
	Nutzungsdauer an NMR-Geräten von 21-31 Tagen (Festpreis)			
	16.000 €	24.000 €	32.000 €	
	(21,51 €/h)**	(32,86 €/h) ⁻	** (43,02 €/h)**	

G-NMR: Establishing a Network of German NMR Centers

Experimente und Standards für Lösungs-NMR

Arbeitsgruppen-Besprechung in

Qualitätskontrolle der NMR Spektrometer

DFG

- Regelmäßige Durchführung und Dokumentation (z.B. halbjährlich)
- Gewährleistung gleichbleibender Geräte Leistungsvermögen
- Nachweis gegenüber externer Benutzer über die Eignung der **Spektrometer**

Proben:

- 0.3 3% CHCl₃ in Acetone-d₆
- 0.1% Ethylbenzene in CDCl₃
- **ASTM (60%** C_6D_6 / 40% p-Dioxane)
- 10% Ethylbenzene in CDCl₃
- □ 2mM Sucrose in 10% H₂O / 90% D₂O
- □ [¹³C;¹⁵N]-Ubiquitin
- □ ([²H;¹³C;¹⁵N]-MBP), optional

Globale Parameter für Experimente mit der Ubiquitin-Probe		
Temperatur: 298K Frequenz:		
$\Box^{1}H = 4.7 \text{ ppm (optimiert)}$		
□ $^{13}C(Aliphatic) = 40ppm$, $^{13}C(CO) = 176 ppm$ (Referenziert auf DSS) □ $^{15}N = 118.5 ppm$		
sweep widths:		
$\Box^{1}H = 12ppm$		
 ¹³C (Aliphatic) = 70 ppm, ¹³C (CO) = 12 ppm (außer für CON) ¹⁵N = 40 ppm 		
Datenpunkte:		
Sollten in allen Dimensionen an die Akquisitionszeit der individuellen Experimente angepasst werden, in Abhängigkeit von der Feldstärke		
Relaxationsintervall: d1 = 1s (außer für (H)CC(CO)NH-TOCSY)		
gradient shape: p16 = 1ms, gpnam = <i>SMSQ10.100</i> (smoothed square amplitude)		
Prozessierung: SI in F2 = 2048, SI in F1 = 1024		
window function: squared sine (qsine) shifted by 90° (ssb=2) keine extra Filterfunktion(bcmod=no), keine linear prediction, Basislinie kann verwendet werden wenn nötig		
20/09/2012		

[¹³C,¹H]-HSQC, Akquisitionsparameter

pulse program: hsqcetgpsisp2

Refs: A.G. Palmer III, J. Cavanagh, P.E. Wright & M. Rance, J. Magn. Reson. 93, 151-170 (1991) L.E. Kay, P. Keifer & T. Saarinen, J. Am. Chem. Soc. 114, 10663-5 (1992)

Aq $(^{1}H) = 71ms$, Aq $(^{13}C) = 12.1ms$

SW (¹H) = 12ppm, SW (¹³C) = 70ppm

NS = 4, DS = 64,

D (d4) = 1.72ms (cnst2 = 145Hz), → d24 = 0.86ms

no ¹H trim pulse: $p28 = 0 \mu s$

¹³C: p14 = 500µs, adiabatic pulse = *Crp60,0.5.20.1 or Crp80,0.5.20.1* für hohe Felder

¹³C dec. : pcpd2 = 100µs, (@ 600 MHz, zu skalieren in Abhängigkeit von der Feldstärke), CPD_prog = bi_garp_4pl

gradients: G1 = 80%, G2 = 20.1%, G3 = 11%, G4 = -5%

Akquisitionsparameter für eine ¹H-¹H plane eines NOESY-[¹³C,¹H]-HSQC

pulse program: noesyhsqcetgp3d mit gradient coherence selection, no sensitivity enhancement Aq (¹H) = 71ms, TD (¹³C) = 1, Aq (¹H indirect) = 17.8ms SW (¹H) = 12ppm in F1 and F3 NS = 8, DS = 32, Δ (d4) = 1.72ms (cnst2 = 145Hz) Mischzeit: d8 = 100ms no ¹H trim pulse: p28 = 0 µs ¹³C: p14 = 500µs, adiabatic pulse = *Crp60,0.5.20.1 or Crp80,0.5.20.1* für hohe Feldstärken ¹³C dec. : pcpd2 = 100µs (@ 600 MHz, zu skalieren mit der Feldstärke), CPD_prog = *bi_garp_4pl* gradients: G1 = 80%, G2 = 20.1%

Workshops Biological NMR spectroscopy

Solution-State NMR

Bi-Annual EMBO Summer Schools Theoretical Basis: Oschkinat/Griesinger/Boelens (Il Ciocco/Berlin), since Hands-On: Sattler/Grzesiek (Basel/Garching), since 1999

Solid-State NMR

European School on Solid-State NMR, Advanced Level – Biological Solids (Oschkinat/Nielsen/de Groot/Meier/Reif) 29.05.-02.06.2006, Brückentinsee 01.07.-06.07. 2008, Aarhus 28.05.-02.06.2010, Leiden 07.-12.10.2012, Brno 2014, Garching

Strategy for National (Bio-) NMR Workshops

Fundamental Principles

Product Operators Dipolar Coupling / CSA Hamiltonian Relaxation NUS, Selective Pulses, Opt Contr

Advanced Methods: Solution-State NMR RDCs, TROSY, CPMG Assignment Strategies

Hands-On: Solution-State NMR Preparation of aligned samples, Implementation of 3D and 4D pulse schemes

Hands-On

Advanced Methods: Solid-State NMR MAS, R2, R3, CP, Decoupling REDOR, C7, FSLG Assignment Strategies

Hands-On: Solid-State NMR SIMPSON, Spinevolution, Shapes, CRAMPS DNP (Theory+Praxis)

NMRpipe, Sparky, CCPN -> Assignment, Structure Calculation (XPLOR-CNS, DYANA)

Potential German Partners (Solid-State NMR)

•••

Solid-State NMR

Solution-State NMR

Clemens Glaubitz, Frankfurt Bernd Reif, Garching Hartmut Oschkinat, Berlin Adam Lange, Göttingen Henrike Heise, Jülich Gerd Buntkowski, Darmstadt Daniel Huster, Leipzig Anne Ulrich, Karlsruhe

Jörg Matysik, Leipzig Jörn Schmedt auf der Günne, Gießen Ulrich Scheler, Dresden Eike Brunner, Dresden Hellmut Eckert, Münster

Kay Saalwächter, Halle

Potential Standard Samples for (bio)-solid-state NMR

- 1) alpha-glycine
- 2) U-13C,15N MLF (to be synthesized by China-Peptide)
- 3) N-Ac-Val.Leu-OH

